

GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DE ESTADO DA EDUCAÇÃO

PROCESSO SELETIVO

010. Prova Objetiva

Professor de Educação Básica II (Física)

- Você recebeu sua folha de respostas e este caderno contendo 80 questões objetivas.
- CONFIRA SEU NOME E NÚMERO DE INSCRIÇÃO IMPRESSOS NA CAPA DESTE CADERNO.
- LEIA CUIDADOSAMENTE AS QUESTÕES E ESCOLHA A RESPOSTA QUE VOCÊ CONSIDERA CORRETA.
- RESPONDA A TODAS AS QUESTÕES.
- MARQUE, NA FOLHA INTERMEDIÁRIA DE RESPOSTAS, LOCALIZADA NO VERSO DESTA PÁGINA, A LETRA CORRESPONDENTE À
 ALTERNATIVA QUE VOCÊ ESCOLHEU.
- TRANSCREVA PARA A FOLHA DE RESPOSTAS, COM CANETA DE TINTA AZUL OU PRETA, TODAS AS RESPOSTAS ANOTADAS NA FOLHA INTERMEDIÁRIA DE RESPOSTAS.
- A DURAÇÃO DA PROVA É DE 4 HORAS.
- A SAÍDA DO CANDIDATO DA SALA SERÁ PERMITIDA APÓS TRANSCORRIDA A METADE DO TEMPO DE DURAÇÃO DA PROVA.
- AO SAIR, VOCÊ ENTREGARÁ AO FISCAL A FOLHA DE RESPOSTAS E ESTE CADERNO, PODENDO DESTACAR ESTA CAPA PARA FUTURA CONFERÊNCIA COM O GABARITO A SER DIVULGADO.

Aguarde a ordem do fiscal para abrir este caderno de questões.

GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DE ESTADO DA EDUCAÇÃO

FOLHA INTERMEDIÁRIA DE RESPOSTAS

QUESTÃO		RES	SPOS	TA	
01	A	В	С	D	E
02	A	В	С	D	E
03	A	В	С	D	E
04	A	В	С	D	E
05	A	В	С	D	E

QUESTÃO		RESPOSTA			
21	A	В	С	D	E
22	A	В	С	D	E
23	A	В	С	D	E
24	A	В	С	D	E
25	A	В	С	Ъ	E

QUESTÃO		RES	SPOS	TA	
41	A	В	С	D	E
42	A	В	С	D	E
43	A	В	С	D	E
44	_A_	В	С	D	E
45	A	В	С	D	E

QUESTÃO		RES	SPOS	TA	
61	A	В	С	D	E
62	A	В	С	D	_ E _
63	A	В	С	D	E
64	A	В	С	_ D _	<u>E</u>
65	A	В	С	D	馬

06	_A	В	С	D	트
07	_A_	В	С	D	E
08	A	В	С	D	E
09	_A_	В	С	D	E
10	A	В	С	D	E

26	
27	A B C D E
28	A B C D E
29	A B C D E
30	A B C D E

46	_A_	В	С	_ D _	_ E _
47	_A_	В	С	D	E
48	A	В	С	D	E
49	A	В	С	D	E
50	A	В	С	Ъ	E

66	_A	В	С	D	E
67	A	В	С	D	E
68	A	В	С	D	E
69	A	В	С	D	E
70	A	В	С	D	E

11	A B C D E
12	A B C D E
13	A B C D E
14	A B C D E
15	A B C D E

31	A B C D E
32	A B C D E
33	A B C D E
34	A B C D E
35	A B C D E

51	A B C D E	71
52	A B C D E	72
53	A B C D E	73
54	A B C D E	74
55	A B C D E	75

71	
72	A B C D E
73	A B C D E
74	A B C D E
75	A B C D E

16	A	В	С	D	E
17	A	В	С	D	E
18	A	В	С	D	E
19		В	С	D	E
20	A	В	С	D	E

56	A	В	С	D	E
57	_A_	В	С	D	E
58	A	В	С	D	E
59	_A_	В	С	D	E
60	A	В	С	D	E

76	A	В	С	D	E
77	A	В	С	D	E
78	A	В	С	D	E
79	A	В	С	D	E
80	A	В	С	D	E

FORMAÇÃO BÁSICA

- **01.** O livro *Educação*: um Tesouro a Descobrir, coordenado por Jacques Delors (1998), aborda de forma bastante didática os quatro pilares de uma educação para o século XXI.
 - Assinale a afirmativa a seguir que está de acordo com as ideias tratadas nessa obra.
 - (A) A educação tem por missão, por um lado, transmitir informações sobre a diversidade da espécie humana e, por outro, levar as pessoas a se conscientizarem tanto das diferenças quanto da independência existentes entre todos os seres vivos do planeta e entre os fenômenos que os envolvem.
 - (B) A educação deve transmitir, de forma maciça e eficaz, os conteúdos destinados a se tornarem as bases das competências do futuro, pois sua mais importante finalidade consiste em fornecer, de todas as formas presumíveis, os conteúdos consagrados ao longo da história da Humanidade.
 - (C) Embora seja uma constante as pessoas mais idosas apresentarem limitações no uso de seus conhecimentos e habilidades, e seu aprendizado ser prejudicado pela falta de curiosidade, a educação para o século XXI tem que contemplar a aprendizagem ao longo de toda a vida.
 - (D) O relatório da comissão da UNESCO faz menção explícita à modalidade de ensino que deve ser desenvolvida para alcançar os objetivos traçados para a educação do século XXI; enfatiza, também, a qualidade e a quantidade de oferta que deve ser mundialmente garantida.
 - (E) A educação voltada ao aprender a conhecer combina uma cultura geral ampla com a possibilidade de dominar em profundidade um pequeno conjunto de conteúdos e supõe o aprender a aprender, que inclui memória, atenção e pensamento, permitindo o raciocínio lógico e as elaborações teóricas.

- **02.** Hargreaves (2004), citando Schumpeter, afirma que "assim como outros tipos de capitalismo, a economia do conhecimento é uma força de destruição criativa, estimulando o crescimento e a prosperidade, ao mesmo tempo em que sua busca incansável de lucro e de interesse próprio desgasta e fragmenta a ordem social." Argumenta que, sendo assim, é necessário fazer com que as nossas escolas
 - (A) estimulem, junto com outras instituições públicas, além da criatividade e da inventividade, a compaixão, a comunidade e a identidade cosmopolita, em favor da sociedade do conhecimento que também inclui o bem comum.
 - (B) promovam processos competitivos entre os professores, ofereçam incentivos materiais e financeiros a eles, selecionando os mais criativos e inventivos que possam desenvolver essas mesmas habilidades nos alunos.
 - (C) invistam recursos materiais e esforços didático-pedagógicos, a fim de que os professores e, por decorrência, os alunos desenvolvam o domínio de habilidades com os recursos tecnológicos para a busca de informação e produção de conhecimento.
 - (D) passem por reformas padronizadoras do currículo, com controles internos e externos de desempenho como forma de garantir que todos os alunos aprendam os mínimos necessários para viverem e trabalharem no contexto atual.
 - (E) recebam atenção diferenciada: para as escolas de sucesso, autonomia para ensinar; para as escolas que apresentam fracassos, programas intensivos de treinamento de professores focados nos pontos de estrangulamento (alfabetização e aritmética).

03. A LDBEN 9394/96, em seu Artigo 1.°, § 2.°, estabelece que "A educação escolar deverá vincular-se ao mundo do trabalho e à prática social". Por sua vez, a equipe que elaborou a Proposta Curricular do Estado de São Paulo estabeleceu princípios norteadores para essa elaboração, levando em conta, para pensar o conteúdo e o sentido da escola, a complexidade da ambiência cultural, das dimensões sociais, econômicas e políticas, a presença maciça de produtos científicos e tecnológicos e a multiplicidade de linguagens e códigos no cotidiano.

Dentre os princípios estabelecidos para a elaboração da Proposta Curricular do Estado de São Paulo, os que apresentam uma relação mais direta com o conteúdo desse parágrafo da LDBEN são:

- (A) "a escola que aprende" e "a articulação das competências para aprender".
- (B) "o currículo como espaço de cultura" e "a contextualização no mundo do trabalho".
- (C) "a escola que aprende" e "as competências como eixo de aprendizagem".
- (D) "o currículo como espaço de cultura" e "a prioridade da competência de leitura e de escrita".
- (E) "a articulação das competências para aprender" e "a contextualização no mundo do trabalho".
- **04.** Em relação à competência do trabalho docente, Rios (2005) afirma que ela se revela na ação e que as qualidades que a compõem "apresentam-se como um conjunto de requisitos que não fazem parte, em sua totalidade, do desempenho de cada indivíduo, mas *podem fazer* e sua possibilidade é verificada na própria realidade." Pondera que a competência não é algo que se adquire de uma vez por todas e nem isoladamente, o que nos leva, ao discuti-la, a relacioná-la com
 - (A) sua dimensão técnico-pedagógica e com sua dimensão política, favorecedoras das relações sociais entre os indivíduos.
 - (B) os concursos para seleção de profissionais do ensino e com a comunicação entre professores nos horários de trabalho pedagógico coletivo.
 - (C) a formação continuada dos educadores e com o diálogo entre eles sobre o trabalho educativo que compartilham na escola.
 - (D) a qualidade cada vez mais discutível das licenciaturas e com o diálogo na gestão escolar ainda escasso, a despeito de muito discurso.
 - (E) a realidade de adversidade e de baixos salários em que vivem os professores e com a ação dos sindicatos que tentam uni-los para dar força às suas reivindicações.

05. Libâneo (2003) assinala que "a ideia de ter as escolas como referência para a formulação e gestão das políticas educacionais não é nova, mas adquire importância crescente no planejamento das reformas educacionais exigidas pelas recentes transformações do mundo contemporâneo."O autor afirma que há, "pelo menos, duas maneiras de ver a gestão educacional centrada na escola": a neoliberal e a sociocrítica.

Assinale a alternativa que faz a correspondência correta entre cada uma dessas perspectivas e o significado que assume, em cada uma delas, a decisão de "pôr a escola no centro das políticas".

- I. Na perspectiva neoliberal, a decisão de "pôr a escola no centro das políticas" significa:
- II. Na perspectiva sociocrítica, a decisão de "pôr a escola no centro das políticas" significa:
- 1 dar liberdade aos profissionais da escola para aplicarem os recursos financeiros a ela destinados e para adotarem métodos de ensino, sem restrições.
- 2 liberar o Estado de boa parte de suas responsabilidades, deixando às comunidades e às escolas a iniciativa de planejar, organizar e avaliar os serviços educacionais.
- 3 valorizar as ações concretas dos profissionais na escola, decorrentes de sua participação em razão de interesse público, sem, com isso, desobrigar o Estado de suas responsabilidades.
- 4 promover a avaliação e a crítica dos serviços educacionais da escola pela sociedade, como base para políticas que visem sua melhoria para o progresso da economia.
- (A) I 1 e II 3.
- (B) I 1 e II 4.
- (C) I-2 e II-3.
- (D) I 2 e II 4.
- (E) I 3 e II 1.

06. A Proposta Curricular do Estado de São Paulo (2008) traz a afirmação de que, para constituir uma escola à altura dos tempos atuais, dentre outras ações, "os gestores, como agentes formadores, devem aplicar com os professores tudo aquilo que recomendam a eles que apliquem com seus alunos".

A esse respeito, Lerner (2002) refere-se a uma estratégia de formação em que o formador coloca os professores em situação de aprendizes, por exemplo, para uma atividade de produção de textos de determinado gênero; mas também organiza o grupo com observadores das intervenções didáticas e, no momento de reflexão sobre o ocorrido, trabalha com eles os conteúdos referentes ao processo de aprendizagem que vivenciaram como alunos e, igualmente, aqueles que dizem respeito à ação hipotetizada do docente.

A autora denomina essa estratégia formadora "situações de

- (A) treinamento complexo".
- (B) aprender e ensinar".
- (C) brincar de aluno".
- (D) dupla conceitualização".
- (E) dupla formação".
- **07.** Na obra *Saberes docentes e formação profissional*, Maurice Tardif (2008), pesquisador e professor universitário no Canadá, expõe sua visão a respeito dos saberes que alicerçam o trabalho e a formação dos professores das escolas de ensino fundamental e de ensino médio. São muitos os pontos de convergência encontrados entre o pensamento de Tardif e as ideias externadas na *Proposta Curricular do Estado de São Paulo para o Ensino Fundamental Ciclo II e Ensino Médio*: documento de apresentação (São Paulo: SE, 2008).

Das alternativas a seguir, assinale a que incorpora tanto as convições de Tardif quanto o espírito da *Proposta Curricular* supracitada.

- (A) O saber docente diz respeito a processos mentais, cujo suporte se esgota na atividade cognitiva dos indivíduos.
- (B) Docência e pesquisa são tarefas especializadas e independentes: cabe aos docentes ensinar e aos cientistas pesquisar.
- (C) Para se promover aprendizagens que sejam relevantes para os alunos, é preciso romper com a ideia de que existe relação entre cultura e conhecimento escolar.
- (D) Dentre as razões para se optar por uma educação centrada no ensino, encontram-se a democratização da escola e a formação de cidadãos críticos.
- (E) Os professores devem ter clareza de que uma parcela relevante do saber docente se dá com o trabalho efetivo, isto é, com a práxis.

08. Contreras (2002), em sua obra *A autonomia de professores*, analisa esse tema vinculado ao do profissionalismo no ensino, buscando avançar na compreensão das questões que eles encerram.

Para o autor, a autonomia docente:

- I. deve ser entendida como um processo dinâmico e de construção permanente, no qual se conjugam, equilibram-se e fazem sentido múltiplos elementos, a partir dos quais ela pode ser explicitada e descrita;
- II. tem sua construção influenciada pelas condições pessoais do professor e pelas condições estruturais e políticas nas quais interagem a escola e a sociedade;
- III. decorre de um atributo pessoal encontrado no professor, o que o autoriza, enquanto profissional técnico, a tomar decisões competentes que terão como suporte a aceitação e o reconhecimento públicos;
- IV. pressupõe que ninguém pode nem deve interferir nas deliberações de um professor em sua classe, porque há uma definição legal de que essa competência é exclusiva dele, não cabendo a intervenção de terceiros.

Assinale a alternativa que reúne as melhores descrições para expressar o pensamento do autor a respeito da autonomia do professor.

- (A) I, apenas.
- (B) I e II, apenas.
- (C) II e III, apenas.
- (D) II e IV, apenas.
- (E) II, III e IV, apenas.

- **09.** O Sistema Nacional de Avaliação da Educação Básica (Saeb) foi iniciado em 1990 e seus resultados
 - (A) constituem um valioso subsídio para orientar a implementação dos Parâmetros Curriculares Nacionais (PCNs) do Ensino Fundamental e da reforma curricular do Ensino Médio, pois possibilitam localizar as principais deficiências na aprendizagem dos alunos das séries examinadas.
 - (B) se restringem a contribuir para a implementação dos Parâmetros Curriculares Nacionais (PCNs) do Ensino Fundamental e para as iniciativas de eliminação do caráter enciclopédico dos currículos, o qual tem afetado negativamente a aprendizagem dos alunos avaliados.
 - (C) permitem comparar o que os parâmetros curriculares oficiais propõem e aquilo que está sendo efetivamente realizado em sala de aula, contudo têm sido ineficientes para identificar as áreas e os conteúdos nos quais os alunos revelam deficiências de aprendizagem.
 - (D) possibilitam extrair informações sobre o desempenho da educação básica em todo o país, mas sem aferir a proficiência dos alunos examinados quanto às suas competências e habilidades nas disciplinas avaliadas por meio desse sistema nacional.
 - (E) têm um potencial importante para o estudo das séries avaliadas tanto no Ensino Fundamental como no Ensino Médio, embora sejam considerados pelo MEC e por outros órgãos de pesquisa como um recurso de valor questionável por decorrerem de uma avaliação externa.

10. Atualmente, os órgãos públicos têm manifestado preocupação com a avaliação educacional, um exemplo é a avaliação da Educação Básica do Estado de São Paulo (Saresp). De acordo com o texto Matrizes de referência para a avaliação Saresp: documento básico (São Paulo: SEE, 2009), o Sistema de Avaliação de Rendimento Escolar do Estado de São Paulo utiliza procedimentos metodológicos formais e científicos cada vez mais aprimorados para coletar e sistematizar dados e produzir informações sobre o desempenho dos alunos das escolas paulistas.

Em relação a esse sistema de avaliação, pode-se afirmar que:

- I. em 2007, muitas mudanças foram introduzidas no Saresp, de maneira a torná-lo mais adequado tecnicamente às características de um sistema de avaliação em larga escala e apto a acompanhar a evolução da qualidade do sistema estadual de ensino ao longo dos anos;
- II. é facultativo ao aluno fazer a prova do Saresp, mas é muito desejável que participe porque essa avaliação revela como anda a educação no Estado de São Paulo e quais áreas deverão receber uma atenção maior por parte do governo;
- III. os pais dos alunos da rede pública de ensino que quiserem que seus filhos participem da prova do Saresp devem procurar a secretaria da escola ou a diretoria de ensino de sua região para inscrevê-los;
- IV. em 2009, pela primeira vez, o Governo do Estado de São Paulo assumiu as despesas decorrentes da aplicação da avaliação das redes municipais de ensino que manifestaram interesse em participar do Saresp.

Assinale a alternativa que contém apenas as afirmativas corretas.

- (A) I e II.
- (B) I, II e IV.
- (C) I, III e IV.
- (D) II e III.
- (E) III e IV.

- 11. A bibliografia constante da Resolução SE n.º 13, de 3.3.2011, que dá suporte ao presente concurso, indicou a leitura de uma reportagem do *site* Educar para Crescer, intitulada *Por dentro do Ideb:* o que é o Índice de Desenvolvimento da Educação Básica?. De acordo com essa reportagem, pode-se afirmar que
 - (A) o índice do Ideb é inadequado como parâmetro para estados e municípios orientarem a melhoria do ensino em suas redes escolares.
 - (B) o que as escolas bem avaliadas têm de especial é o privilegiado nível socioeconômico dos seus alunos.
 - (C) mesmo sabendo que a maior parte das escolas brasileiras faz exigência de leitura, essa prática pouco interfere no desempenho dos alunos quanto ao Ideb.
 - (D) a porcentagem de professores com curso superior completo é irrelevante para o bom desempenho da escola no Ideb.
 - (E) uma análise das instituições campeãs do ranking mostra como, com medidas simples, é possível se obter a melhoria do ensino.
- 12. Os professores de todas as disciplinas do currículo escolar dependem da mediação de sistemas simbólicos, principalmente da mediação do sistema da língua/linguagem, para desenvolver o trabalho didático-pedagógico junto a seus alunos. Por outro lado, ao ensinar essa ou aquela disciplina, esses professores também estão ensinando a língua materna, o que pode ser feito de forma significativa, relacionando vida e conhecimento, fazendo leitura de mundo enquanto se leem e se escrevem textos. Por essa razão, a Proposta Curricular do Estado de São Paulo, coerente com estudos contemporâneos, como o de Lerner (2002), estabelece prioridade para
 - (A) a competência da leitura e da escrita com fundamento na centralidade da linguagem no desenvolvimento da crianca e do adolescente.
 - (B) as aulas de Português, Matemática e Arte, com intuito de melhorar a aprendizagem em todas as demais disciplinas do currículo.
 - (C) o ensino de línguas, acrescentando mais dois idiomas estrangeiros modernos, ao longo da Educação Básica, com seriação paralela.
 - (D) a competência de comunicação dos professores da Educação Básica, a ser aferida nos próximos processos seletivos.
 - (E) as práticas de leitura e escrita, no trabalho didático--pedagógico, do segundo ao nono ano do Ensino Fundamental, utilizando metade ou mais da carga horária diária.

- 13. Zabala, em Coll (2006), argumenta que, no processo de planejamento, as decisões relativas à seleção dos diferentes tipos de conteúdos que farão parte de determinada unidade didática, bem como as decisões relacionadas às situações de aprendizagem, às atividades e tarefas a serem propostas para trabalhar esses conteúdos, e ainda as decisões relativas à organização e distribuição do tempo e do espaço para desenvolvê-las, aos materiais didáticos mais adequados, levando em conta as características dos agrupamentos de alunos, todas elas são guiadas ou orientam-se
 - (A) por roteiros ou planilhas para registro dos planos de ensino, elaborados pelos gestores da escola em que os professores trabalham.
 - (B) pelas instruções dos coordenadores pedagógicos ou, na ausência deles, dos diretores de escola, ajudados, quando possível, pelos monitores da oficina pedagógica.
 - (C) pelos objetivos do trabalho educativo que está sendo planejado, nos quais se baseia a articulação desses elementos todos, de modo a buscar atingi-los.
 - (D) pelos conceitos e princípios de cada disciplina do currículo, sistematizados no livro-texto adotado pela escola, referência, também, para avaliação e promoção dos alunos.
 - (E) pelos recursos didáticos de que a escola dispõe, pois de nada adianta planejar um trabalho sem levar em conta as ferramentas às quais se terá acesso para executá-lo.

14. No artigo *A estabilidade do currículo disciplinar*: o caso das ciências, Alice Casimiro Lopes e Elizabeth Macedo (2002) problematizam a integração curricular, examinando a disciplina a que fazem referência.

Nesse trabalho, as autoras argumentam que

- (A) a integração curricular em ciências se dá pela via da interdisciplinaridade e do projeto, devendo-se ter o cuidado de assegurar a individualidade das disciplinas, pois esta fica ameaçada quando se usam aquelas vias de integração.
- (B) mesmo em currículos transversais, cuja matriz de conhecimento é não disciplinar, a força dos processos de administração curricular acaba gerando a organização de disciplinas para controle das atividades docentes e/ ou discentes.
- (C) a disciplina escolar se identifica com a disciplina científica, portanto o professor em ciências deve atuar como um pesquisador ou cientista que explora e aplica saberes de diferentes áreas do conhecimento.
- (D) a força do controle e dos processos de administração curricular fica inibida quando se trata da área de ciências, porque esta exige um tratamento interdisciplinar a partir das diversas disciplinas que a integram.
- (E) a integração curricular por meio da abordagem interdisciplinar dos conteúdos escolares, tanto no Ensino Fundamental quanto no Médio, só pode efetivar-se nos limites de um mesmo campo de conhecimento.

- **15.** Leia atentamente as diversas formas de conceber a avaliação da aprendizagem, que constam a seguir.
 - 1 Avaliação classificatória.
 - 2 Avaliação vinculada ao projeto político-pedagógico.
 - 3 Avaliação mediadora.
 - 4 Avaliação seletiva e excludente.
 - 5 Avaliação envolvendo a melhoria da situação avaliada.
 - 6 Avaliação que se limita à observação e à interpretação da situação avaliada.
 - 7 Avaliação com o objetivo de verificação do desempenho do aluno e de registro de dados desse desempenho.
 - 8 Avaliação a serviço da aprendizagem do aluno, da sua formação e da busca de cidadania.
 - 9 Avaliação visando à promoção moral e intelectual dos alunos.
 - 10 Avaliação facilitada para promover automaticamente o aluno.

Assinale a alternativa que reúne apenas os itens que apresentam formas de conceber a avaliação coerentes com o pensamento de Hoffmann (2001), com o de Vasconcellos (2008) e com as concepções e orientações relativas à Progressão Continuada, nos termos da Deliberação CEE n.º 9/97 e da Indicação CEE n.º 8/97.

- (A) 1; 3; 6; 7 e 9.
- (B) 1; 4; 6; 7 e 9.
- (C) 2; 3; 5; 8 e 9.
- (D) 2; 3; 5; 8 e 10.
- (E) 2; 5; 7; 8 e 10.

- 16. Para PERRENOUD (2000), a capacidade de organizar e dirigir situações de aprendizagem constitui uma das dez competências para ensinar e mobilizar competências específicas, dentre as quais, de acordo com o autor, encontra-se a competência para
 - (A) construir e planejar dispositivos e sequências didáticas, nas quais cada situação é uma etapa em progressão, o que mobiliza o aluno para compreender e ter êxito ou as duas realizações.
 - (B) construir e planejar sequências didáticas, nas quais o professor induz a construção do conhecimento pelo aluno, por meio de uma trajetória coletiva, e como especialista propõe a solução do problema e transmite o saber.
 - (C) trabalhar a partir dos erros do aluno e dos obstáculos à sua aprendizagem, aplicando os conhecimentos de didática e psicologia cognitiva, interessando-se por tais erros e corrigindo-os um a um para sua superação.
 - (D) trabalhar partindo das representações do aluno, dialogando com ele, respeitando suas concepções sem questioná-las, para preservá-las e, dessa forma, aproximar esse aluno do conhecimento científico.
 - (E) trabalhar no sentido de romper certas concepções do aluno, eliminando-as e demonstrando-lhe que, como professor, é capaz de oferecer-lhe conhecimento científico em substituição às suas ideias de senso comum.

17. Luís tem onze anos e frequenta o sexto ano do Ensino Fundamental numa escola estadual. Ele apresenta muita dificuldade na leitura e na escrita, o que o leva a ter um baixo rendimento em todas as disciplinas, embora seja uma criança desejante de aprender. Nessas circunstâncias, e levando-se em conta o que dispõe o Artigo 13 da atual LDBEN, o professor PEB II, de Português, que vem desenvolvendo, com os devidos registros, um processo de recuperação contínua, levou o caso de Luís para ser discutido pelo Conselho de Classe, o qual julgou adequado encaminhá-lo à recuperação paralela.

Das alternativas que seguem, escolha a que corresponde às orientações contidas no documento *Caderno do Gestor* (2009) vol. 1, e que serviram de suporte para o encaminhamento do caso de Luís.

- (A) Os casos de alunos que, durante a aula, não querem ou não se empenham em resolver as atividades propostas para sua aprendizagem precisam ser atendidos por meio da recuperação paralela em substituição à recuperação contínua.
- (B) A recuperação paralela, desenvolvida fora do horário regular de aulas, exige a interrupção da recuperação contínua, a fim de evitar a sobrecarga do aluno com a duplicidade de formas suplementares de atendimento.
- (C) O encaminhamento do aluno para a recuperação paralela deve ser feito no início do semestre letivo e precedido de uma avaliação diagnóstica, com indicação do que o aluno deve aprender, mantendo-se esse atendimento por um semestre, no mínimo.
- (D) A recuperação contínua, inserida no trabalho de sala de aula e constituída de intervenções baseadas na avaliação sistemática do desempenho do aluno, deve articular-se à paralela quando necessária para que o aluno acompanhe o ritmo de sua turma.
- (E) O encaminhamento do aluno para a recuperação paralela provém de decisão do Conselho de Classe/Série e ocorre quando o aluno demonstra não ter condições para acompanhar o ritmo da classe ou manifesta um comportamento inadequado em aula.

18. Os professores do 8.º ano (antiga 7.ª série) de uma escola de Ensino Fundamental reuniram-se numa atividade de HTPC (Horário de Trabalho Pedagógico Coletivo) para discutir suas concepções (divergências e consensos) a respeito do Conselho de Classe/Série, pois vinham encontrando dificuldades no encaminhamento e aproveitamento pedagógico e educacional das reuniões desse colegiado, com vistas à oferta de um ensino de qualidade a todos os alunos. Suas principais divergências e/ou consensos perpassavam os objetivos e a composição desse Conselho.

Para os professores

- I. Júlio e Madalena, o Conselho de Classe/Série será constituído por todos os professores da mesma classe ou série e contará com a participação de um aluno e um pai de aluno por classe, devendo reunir-se ordinariamente uma vez por bimestre ou quando convocado pelo diretor da escola;
- II. Hilda e Gregório, o Conselho de Classe/Série é o colegiado responsável pelo acompanhamento do processo ensino-aprendizagem e seu objetivo supera o simples julgamento de alunos com problemas de aprendizagem;
- III. Lígia, Helena e Akira, aquele que preside a reunião do Conselho precisa esclarecer que antes de julgar os alunos, os conselheiros devem avaliar o que a escola faz ou deixa de fazer para atender com qualidade a população e como compensará os que forem prejudicados;
- IV. Luana, Eneida e Venâncio, cada conselheiro deve munir-se de informações detalhadas sobre todos os alunos da classe para que, em reunião, possa tomar decisões coerentes sobre eles, sem precisar acatar ideias de colegas a respeito desses alunos, da escola e de seu trabalho em sala de aula.

Assinale a alternativa cujos itens expressam os entendimentos dos professores em concordância com o documento *Gestão do currículo na escola*: Caderno do gestor (2009) vol.1.

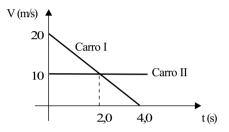
- (A) I e II, apenas.
- (B) I, II e III, apenas.
- (C) II e III, apenas.
- (D) II, III e IV, apenas.
- (E) I, II, III e IV.

- 19. Chrispino (2007), no texto Gestão do conflito escolar: da classificação dos conflitos aos modelos de mediação, afirma que o conflito faz parte de nossa vida pessoal e está presente em instituições, interferindo na dinâmica de seu funcionamento, o que ocorre também com a escola, para a qual recomenda
 - (A) instigá-lo, pois o conflito é fonte de conhecimento e de avanço nas soluções organizacionais e, desde que mediado pelo professor, educa crianças e jovens para a convivência tolerante de modo duradouro e extensivo a outros contextos.
 - (B) enfrentá-lo com firmeza, exercendo uma liderança institucional que toma o partido do conflitante, o qual está com a razão em termos dos objetivos da escola, o que desencoraja futuros conflitos e incentiva o comportamento desejado para os alunos.
 - (C) inibi-lo antes que gere violência, pois deve ser visto como uma anomalia do controle social e, portanto, como algo ruim, que educadores das novas gerações devem combater, contribuindo para a construção de uma sociedade da paz.
 - (D) enfrentá-lo com habilidade investigativa, identificando as lideranças negativas que incitam ao conflito e devem ser cortadas, bem como as lideranças positivas que, treinadas pelos educadores, podem exercer a mediação para extinção do conflito.
 - (E) enfrentá-lo com habilidade, exercendo uma mediação que melhore as relações entre os alunos, o que pode oportunizar o bom desenvolvimento das aulas e permitir a vivência da tolerância, como patrimônio que se manifestará em outros momentos da vida.
- 20. Beaudoin e Taylor (2006) defendem que o bullying é mais do que um simples fenômeno: é uma cultura na escola. Entretanto, não devemos aceitá-lo como algo natural e inevitável entre os estudantes, é preciso investir esforços para proporcionar mudanças significativas nas relações de convívio tanto escolar quanto social.

Com esse entendimento, é correto afirmar que o bullying

- (A) ocorre sempre da mesma maneira, pois ele independe de um filtro cultural daquilo que é aceitável numa situação específica.
- (B) é um fenômeno em que agressores e vítimas sempre pertencem a um mesmo estrato social.
- (C) é um fenômeno típico de adolescentes e nunca ocorre em idades precoces como as das crianças da educação infantil.
- (D) tende a desaparecer quando se constrói um clima de atenção e de vínculo entre as pessoas.
- (E) é uma forma de intimidação indireta que inclui as "gozações", mas nunca chega a empregar a força física.

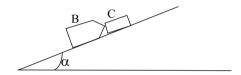
FORMAÇÃO ESPECÍFICA


- 21. Considere que o tempo decorrido desde o surgimento dos primeiros seres humanos até hoje é de cerca de 10¹³s e que o tempo de revolução da Terra ao redor do Sol é de 10⁷s. A partir dessas informações, pode-se afirmar que o número de voltas da Terra ao redor do Sol desde o surgimento dos primeiros homens até hoje é igual a
 - (A) 10^4 .
 - (B) 10⁵.
 - (C) 10^6 .
 - (D) 10⁷.
 - (E) 10^8 .

Este enunciado refere-se às questões de números 22 e 23.

Um professor divide a sala em dois grupos de alunos e propõe a eles que determinem a velocidade média de um carro ao percorrer toda a extensão da rua onde fica a escola. Para medir essa extensão, ele sugere que os alunos contem o número de passos necessários para um deles percorrê-la e multipliquem esse número pelo comprimento médio de cada passo; o tempo de percurso seria medido por meio de um cronômetro. Ambos os grupos mediram o mesmo tempo, 20s, mas o grupo I obteve para a velocidade média do carro 15 m/s e o grupo II, 12 m/s. Desconfiado desse resultado, o professor verificou que o segundo grupo realizou corretamente as suas medidas, mas o primeiro grupo havia cometido um erro ao medir a rua, pois havia considerado erroneamente que o comprimento medido do passo de um dos garotos era igual a 1,0 m.

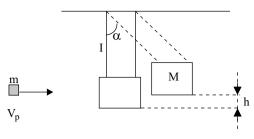
- **22.** A partir das informações oferecidas pelo enunciado, podeses concluir que o comprimento dos passos do garoto do grupo I, que gerou a incoerência das medidas, era de
 - (A) 0,50 m.
 - (B) 0,60 m.
 - (C) 0.70 m.
 - (D) 0,80 m.
 - (E) 0,90 m.


- 23. Se, em vez do carro, os grupos I e II, antes da correção feita pelo professor, tivessem observado uma carroça, que demorou 100 s para percorrer toda a extensão da rua, teriam concluído, respectivamente, que a velocidade média da carroça, em m/s, seria de
 - (A) 3,0 e 2,4.
 - (B) 2,4 e 3,0.
 - (C) 0,8 e 3,0.
 - (D) 2,4 e 0,8.
 - (E) 1,3 e 3,0.
- **24.** O gráfico das velocidades em função do tempo mostrado a seguir refere-se ao movimento de dois carros que percorrem a mesma trajetória retilínea e passam pela mesma posição em t = 0s.

Da análise desse gráfico, é correto afirmar que

- (A) os carros encontram-se no instante t = 2.0 s.
- (B) os carros encontram-se no instante t = 4.0 s.
- (C) o carro I percorre 20 m nos primeiros 2,0 s de movimento.
- (D) o carro II percorre 10 m nos primeiros 2,0 s de movimento.
- (E) o carro II percorre 20 m nos primeiros 4,0 s de movimento.
- 25. Duas crianças divertem-se patinando em uma pista de gelo. Um deles, de massa 45 kg, tinha uma velocidade de 4,0 m/s, quando colidiu frontalmente com o outro, que se deslocava com velocidade de 3,0 m/s, no sentido contrário. Imediatamente após a colisão, os dois param no local do encontro. Nessas condições, pode-se afirmar que a massa, em kg, da outra criança, era de
 - (A) 30.
 - (B) 40.
 - (C) 50.
 - (D) 60.
 - (E) 70.

- **26.** Um grande navio petroleiro com velocidade de 15 m/s percorre aproximadamente 20 km até conseguir parar. Supondo que durante a frenagem ele tenha percorrido uma trajetória retilínea com aceleração constante, pode-se afirmar que o tempo aproximado gasto nessa manobra, em minutos, é de
 - (A) 30.
 - (B) 45.
 - (C) 60.
 - (D) 75.
 - (E) 90.
- 27. Considere um carrinho de brinquedo (B) que seja capaz de exercer uma força **F**, constante e paralela ao plano inclinado, sobre uma caixinha de fósforos (C), enquanto sobe uma rampa inclinada de um ângulo α, conforme indica a figura:


Considere as seguintes afirmações sobre as forças atuantes sobre a caixinha de fósforos:

- I. a força de atrito depende da massa da caixinha de fósforos;
- II. a força de atrito independe da inclinação α;
- III. a força resultante depende da massa da caixinha.

É (são) verdadeira(s) a(s) afirmação(ões)

- (A) I, apenas.
- (B) I e II, apenas.
- (C) I e III, apenas.
- (D) II e III, apenas.
- (E) I, II e III.

28. A figura é uma representação de um pêndulo balístico, um antigo dispositivo para se medir a velocidade de projéteis.

Suponha que um projétil com velocidade V_p , de massa m=10g, atinge o bloco de massa M=990g inicialmente em repouso. Após a colisão, o projétil aloja-se dentro do bloco e o conjunto atinge uma altura máxima h=5,0 cm. Considerando g=10 m/s², pode-se afirmar que a velocidade do projétil, em m/s, é

- (A) 30.
- (B) 100.
- (C) 150.
- (D) 200.
- (E) 250.
- **29.** Considere a seguinte tabela sobre a aceleração da gravidade em alguns astros do Sistema Solar.

ASTRO DO SISTEMA SOLAR	ACELERAÇÃO DA GRAVIDADE (m/s²)	
Mercúrio	3,8	
Júpiter	25	
Lua	1,7	

A partir dessas informações, pode-se afirmar que a velocidade de um objeto quando chega ao solo, ao cair livremente a partir do repouso, de uma mesma altura h = 2 m, será

- (A) a mesma independentemente do astro em que se encontra.
- (B) maior, quanto menor o campo gravitacional do astro em que se encontra.
- (C) aproximadamente igual a 36 km/h, se estiver na Lua.
- (D) aproximadamente igual a 36 km/h, se estiver em Júpiter.
- (E) aproximadamente igual a 5 km/h, se estiver em Mercúrio.

30. Um professor pediu aos seus alunos que avaliassem o quanto 4 bolinhas de gude eram esféricas. Para isso, sugeriu que medissem de cada uma delas, dois diâmetros: d_{AB} (mm) e d_{A'B'} (mm), a partir de duas direções radiais perpendiculares entre si, e determinassem a diferença percentual entre esses diâmetros. A tabela a seguir mostra os resultados obtidos pelos alunos.

BOLINHA DE GUDE	d _{AB} (mm)	d _{A'B'} (mm)	Diferença (mm)	Diferença Percentual (d%)
1	10,0	11,0	1,0	9
2	10,0	10,8	0,8	7
3	10,0	10,6	0,6	6
4	10,5	10,0	0,5	5

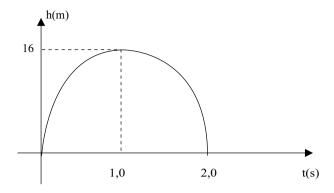
Sabendo que o diâmetro polar da Terra mede 12 713 km e o diâmetro equatorial, 12 756 km, pode-se afirmar que a diferença percentual entre os diâmetros (polar e equatorial) do planeta Terra é, quando comparado à diferença percentual (d%) entre os diâmetros d_{AB} e d_{A'B'}, das bolinhas de gude,

- (A) maior que o da bolinha de gude 1.
- (B) maior que o da bolinha de gude 2 e menor que o da bolinha de gude 1.
- (C) maior que o da bolinha de gude 3 e menor que o da bolinha de gude 2.
- (D) maior que o da bolinha de gude 4 e menor que o da bolinha de gude 3.
- (E) menor que o da bolinha de gude 4.

Esta tabela refere-se ao enunciado das questões de números 31 e 32

PLANETA	Distância ao Sol (x10 ¹⁰ m)
Mercúrio	5,79
Vênus	10,8
Terra	15,0
Marte	22,8
Júpiter	77,8
Saturno	143
Urano	283
Netuno	450

- 31. Para auxiliar seus alunos a avaliarem as dimensões envolvidas no espaço sideral, um professor propôs a eles que marcassem no chão do pátio da escola as posições do Sol e dos planetas, em escala. Ao buscarem a relação de proporcionalidade das distâncias, os alunos, com os dados fornecidos pela tabela, perceberam que a marcação dessas posições deveria ser realizada em um espaço mínimo de
 - (A) 40 m, se considerassem que a distância do Sol à Terra é equivalente a 1,5 m.
 - (B) 30 m, se considerassem que a distância do Sol à Terra é equivalente a 1,5 m.
 - (C) 15 m, se considerassem que a distância do Sol à Terra é equivalente a 1,5 m.
 - (D) 30 m, se considerassem que a distância do Sol à Terra é equivalente a 1,0 m.
 - (E) 20 m, se considerassem que a distância do Sol à Terra é equivalente a 1,0 m.
- **32.** Se o Sol se apagar, ainda teremos, aproximadamente, 8,0 minutos de luz solar, tendo em vista o tempo que a luz do Sol demora até chegar ao planeta Terra. Considerando que a velocidade da luz no vácuo é de 3,0 x 10⁸ m/s e os dados fornecidos na tabela, pode-se afirmar que, se estivéssemos em Saturno quando o Sol se apagasse, ainda teríamos um tempo de luz solar aproximadamente igual a
 - (A) 10 minutos.
 - (B) 20 minutos.
 - (C) 40 minutos.
 - (D) 60 minutos.
 - (E) 80 minutos.


33. Na Antiguidade, foi a tradição indiana que imaginou as durações de tempo mais longas. Nessa tradição, o dia de Brahman, período durante o qual o deus absoluto está ativo, teria uma duração de aproximadamente 4,38 x 10⁹ anos terrestres. Estima-se que o tempo presumível de vida do Sol como estrela normal é da ordem de 10¹⁸ segundos.

(Roberto de Andrade Martins, *O universo: teorias sobre sua origem e evolução*. São Paulo: Editora Moderna, 1994. Adaptado)

A partir dessas informações, é correto afirmar que o dia de Brahman em relação ao tempo presumível de vida do Sol como estrela normal é, aproximadamente,

- (A) 109 vezes menor.
- (B) 10³ vezes menor.
- (C) 10 vezes menor.
- (D) 10³ vezes maior.
- (E) 109 vezes maior.
- 34. Em agosto de 2006, a Assembléia Geral da União Astronômica Internacional (IAU) aprovou uma resolução definindo o que é um planeta. De acordo com essa resolução, Plutão deixou de ser planeta e passou a ser considerado planeta-anão, em uma nova categoria de corpo celeste criada nessa mesma assembleia. Segundo essa resolução, o que diferencia a categoria dos planetas-anões dos planetas é o fato de os planetas-anões
 - (A) não girarem em torno do Sol.
 - (B) não serem esféricos.
 - (C) não terem satélites.
 - (D) compartilharem suas órbitas com muitos outros planetas-anões.
 - (E) não serem visíveis da Terra a olho nu.

35. O gráfico a seguir é uma parábola que representa um movimento de lançamento vertical, ocorrido a partir de um planeta hipotético, cuja gravidade, em m/s², é

- (A) 12,4.
- (B) 16,2.
- (C) 24,4.
- (D) 26,0.
- (E) 32,0.
- **36.** Considere as seguintes afirmações sobre a evolução dos conceitos da Física:
 - I. a teoria geocêntrica desenvolvida por Cláudio Ptolomeu no séc. II d.C. foi aceita por aproximadamente
 1 500 anos, devido à ausência de teorias contrárias;
 - II. o astrônomo Aristarco de Samos defendia, no séc. III a.C, a ideia de que a Terra girava em torno do Sol, mas sua teoria não era aceita;
 - III. no séc. XVI, Nicolau Copérnico propôs a teoria heliocêntrica, que foi imediatamente aceita por toda a comunidade científica da época;
 - IV. no início do séc. XVII, a observação astronômica dos satélites de Júpiter por Galileu Galilei foi decisiva para a aceitação da teoria de Copérnico.

É(são) verdadeira(s) a(s) afirmação(ões)

- (A) II, apenas.
- (B) IV, apenas.
- (C) II e IV, apenas.
- (D) I e III, apenas.
- (E) I, II, III e IV.

37. Suponha um corpo colocado entre a Terra e a Lua em uma posição tal que a resultante das forças de atração gravitacional exercida sobre ele pela Terra e pela Lua seja nula. Sendo dados:

Razão entre a massa da Terra e a massa da Lua = 81 Distância entre o centro da Terra e o centro da Lua = d a distância desse corpo ao centro da Lua é, aproximadamente, igual a

- (A) d/2.
- (B) d/4.
- (C) d/5.
- (D) d/10.
- (E) d/20.
- 38. Para determinar a frequência do som produzido por um diapasão, um estudante faz soar esse diapasão na borda superior de uma proveta de altura 30 cm, inicialmente vazia. À medida que ele coloca água nessa proveta, ele observa que o som mantém praticamente a mesma intensidade, mas há um sensível aumento dessa intensidade quando a proveta contém 10 cm de água. Acima dessa quantidade de água, a intensidade do som volta a baixar ao nível anterior e assim permanece até que a proveta esteja cheia. Considerando que a velocidade do som no ar é de 300 m/s, concluímos que a frequência fundamental do som produzido pelo diapasão, em Hz, era igual a
 - (A) 220.
 - (B) 375.
 - (C) 390.
 - (D) 440.
 - (E) 660.
- **39.** Uma corda de violão fixa entre duas extremidades separadas pela distância L_0 emite a frequência fundamental de 330 Hz quando vibra livremente. Para que essa mesma corda emita um som cuja frequência seja igual a 660 Hz, o comprimento entre as extremidades da corda deverá ser
 - (A) $L_0/4$.
 - (B) $L_0/2$.
 - (C) L₀.
 - (D) 2L₀.
 - (E) 4L₀.

40. Atualmente, há uma preocupação cada vez maior com a poluição sonora. Suponha que uma lei penalize quem produza ruídos que ultrapassem os níveis de intensidade sonora, estabelecidos na tabela a seguir.

	Diurno	Noturno
Áreas residenciais	50 dB	45 dB
Áreas industriais	70 dB	60 dB

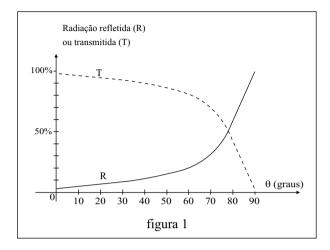
Níveis de intensidade sonora de situações comuns do cotidiano são listados na próxima tabela.

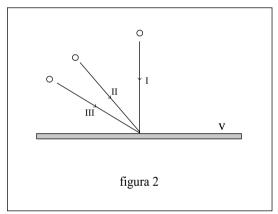
FONTE DO SOM	Nível de intensidade sonora
Sirene	110 dB
Cortador de grama	100 dB
Buzina	90 dB
Aspirador de pó	70 dB
Carro silencioso	50 dB

Considere os seguintes grupos de pessoas que utilizassem, nas áreas residencial e industrial,

- I. um cortador de grama no período diurno;
- II. um carro silencioso no período noturno;
- III. um aspirador de pó no período noturno.

Se não houver nenhum outro atenuante na lei, seriam considerados infratores o(s) grupo(s)


- (A) I, apenas.
- (B) I e II, apenas.
- (C) II e III, apenas.
- (D) I, II e III.
- (E) I e III, apenas.


41. Você diz aos seus alunos que, quando um objeto real está diante de um espelho esférico côncavo, a uma distância maior do que a distância focal desse espelho, a imagem por ele conjugada é invertida e localizada à frente do espelho. Um aluno, no entanto, questiona essa afirmação, dizendo que viu a imagem do seu rosto refletida na face côncava de uma concha de aço inoxidável semiesférica: "é verdade que a imagem é invertida, mas a gente a vê na própria superfície da concha".

Assinale a seguir a alternativa em que é apresentada uma resposta possível a essa afirmação.

- (A) Isso acontece porque você não consegue afastar-se da concha a uma distância maior do que a sua distância focal.
- (B) Isso acontece porque, em relação à concha, você está praticamente no infinito.
- (C) Isso acontece porque a concha não pode ser considerada um espelho esférico, pois não obedece às condições de estigmatismo de Gauss.
- (D) O que vale para um objeto nem sempre vale para o próprio observador, pois o sistema óptico do olho humano altera a localização final da imagem.
- (E) A imagem do seu rosto se forma de fato à frente da superfície, mas seu cérebro não interpreta a situação desse modo e "coloca" a imagem na superfície da concha.

42. O gráfico da figura 1 representa a intensidade da radiação transmitida ou refratada (curva **T**) e a intensidade da radiação refletida (**R**) em função do ângulo de incidência da luz numa superfície plana de vidro transparente de índice de refração 1,5. A figura 2 mostra três direções possíveis – I, II e III – pelas quais o observador **O** olha para a vitrine plana de vidro transparente, V.

Comparando as duas figuras, pode-se concluir que esse observador vê melhor o que está dentro da vitrine quando olha na direção

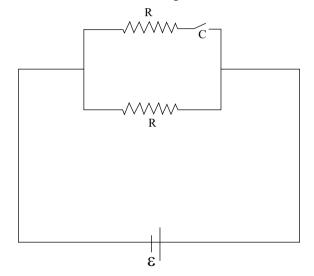
- (A) I e vê melhor o que a vitrine reflete quando olha na direção II.
- (B) I e vê melhor o que a vitrine reflete quando olha na direção III.
- (C) II e vê melhor o que a vitrine reflete quando olha na direção I.
- (D) II e vê melhor o que a vitrine reflete quando olha na direção III.
- (E) III e vê melhor o que a vitrine reflete quando olha na direção I.

- 43. Um estudante, por sugestão do seu professor, projeta a imagem da tela da televisão da sala de sua casa na parede em frente, com auxílio de uma lupa. Para isso, ele decide distanciá-la da televisão e aproximá-la da parede. Desse modo, ele consegue projetar na parede uma imagem que, em relação à imagem da tela da televisão, é
 - (A) menor e invertida tanto na direção vertical como na horizontal.
 - (B) maior e invertida tanto na direção vertical como na horizontal.
 - (C) igual e invertida tanto na direção vertical como na horizontal.
 - (D) menor, direita na direção vertical, mas invertida na horizontal.
 - (E) menor, invertida na direção vertical, mas direita na horizontal.
- **44.** Uma pessoa míope enxerga bem, sem óculos, com um de seus olhos, até uma distância de 25 cm. Avalie qual deve ser a convergência da lente capaz de corrigir a miopia desse olho.
 - (A) 1.0 di.
 - (B) $-2.5 \, \text{di}$.
 - (C) $-4.0 \, \text{di}$.
 - (D) + 2.0 di.
 - (E) + 1.5 di.

- 45. Um aluno conta, em sua aula de óptica, que se surpreendeu ao encontrar em uma loja um projetor multimídia com três tubos projetores, cada um com uma cor: azul, vermelho e verde. A razão da surpresa foi ele ter aprendido em suas aulas de ciências do ensino fundamental que as cores primárias seriam azul, vermelho e amarelo. Você explica a ele que não há apenas um conjunto de cores primárias, e o que ele aprendeu no ensino fundamental
 - (A) refere-se às cores emitidas pela luz refletida dos pigmentos quando iluminados por luz branca, enquanto o conjunto do projetor refere-se às cores emitidas diretamente pelas fontes de luz.
 - (B) refere-se às cores emitidas pela luz refletida dos pigmentos quando iluminados por luz branca, enquanto o conjunto do projetor refere-se às cores absorvidas diretamente pelas fontes de luz.
 - (C) refere-se às cores emitidas pela luz refletida dos pigmentos quando iluminadas por luz azul, enquanto o conjunto do projetor refere-se às cores emitidas diretamente pelas fontes de luz.
 - (D) na verdade, é um conjunto que se refere às cores absorvidas por pigmentos quando iluminados por luz branca, enquanto o conjunto do projetor refere-se às cores emitidas diretamente pelas fontes de luz.
 - (E) refere-se às cores absorvidas por pigmentos quando iluminados por luz azul, enquanto o conjunto do projetor refere-se às cores emitidas diretamente pelas fontes de luz.
- **46.** Quando se olha a luz branca de uma lâmpada incandescente ou fluorescente refletida na superfície de um CD, pode-se ver o espectro contínuo de cores que compõem essa luz. Esse efeito ocorre nos CDs devido à
 - (A) difração dos raios refratados nos sulcos do CD, que funcionam como uma rede de difração.
 - (B) interferência dos raios refletidos nos sulcos do CD, que funcionam como uma rede de difração.
 - (C) interferência dos raios refletidos nos sulcos do CD, que funcionam como um prisma.
 - (D) polarização dos raios refletidos nos sulcos do CD, que funcionam como um polarizador.
 - (E) refração dos raios refletidos nos sulcos do CD, que funcionam como uma rede de prismas.

- 47. No século XVII, foram apresentados dois modelos distintos para a natureza da luz: o corpuscular, defendido por Isaac Newton, e o ondulatório, defendido pelo físico e astrônomo Christiaan Huygens. No entanto, a opção pelo modelo ondulatório acabou prevalecendo até o início do século XX, graças a duas experiências históricas realizadas no século XIX:
 - I. o experimento de dupla fenda realizado por Thomas Young, em 1801, e
 - II. a medida da velocidade da luz na água, realizada por Léon Foucault, em 1851.

Os resultados desses experimentos, decisivos para a consolidação do modelo ondulatório, foram:

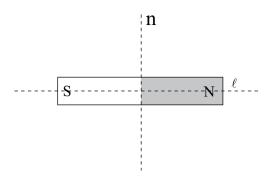

- (A) I) a existência da interferência luminosa; II) a velocidade da luz na água é menor do que no ar.
- (B) I) a existência da refração luminosa; II) a velocidade da luz na água é menor do que no ar.
- (C) I) a existência da polarização da luz; II) a velocidade da luz na água é menor do que no ar.
- (D) I) a existência da interferência luminosa; II) a velocidade da luz na água é maior do que no ar.
- (E) I) a existência da polarização da luz; II) a velocidade da luz na água é maior do que no ar.

48. A figura representa uma antena parabólica costumeiramente usada para a recepção de canais de televisão por assinatura. Sabe-se que essas antenas têm como refletor a calota de um paraboloide e adota um dos seus focos secundários (F) para a captação do sinal transmitido pelas ondas eletromagnéticas. Duas razões para a escolha dessa superfície geométrica refletora (I) e de um foco secundário dessa superfície refletora (II) são:

- (A) I) o estigmatismo dos refletores parabólicos em relação aos seus focos para fontes de radiação eletromagnética localizadas no infinito; II) evitar a sombra dessas ondas que o suporte do receptor e do próprio receptor projetariam sobre o refletor.
- (B) I) a impossibilidade de reflexão da radiação eletromagnética em superficies de outras formas geométricas; II) evitar a sombra dessas ondas que o suporte do receptor e do próprio receptor projetariam sobre o refletor.
- (C) I) a maior sensibilidade que essa forma geométrica dá a esse tipo de refletor; II) a impossibilidade de se obter a convergência das ondas eletromagnéticas incidentes no foco principal da superfície refletora.
- (D) I) a impossibilidade de reflexão da radiação eletromagnética em superfícies de outras formas geométricas; II) a impossibilidade de se obter a convergência das ondas eletromagnéticas incidente no foco principal da superfície refletora.
- (E) I) o estigmatismo dos refletores parabólicos em relação aos seus focos para fontes de radiação eletromagnética localizadas no infinito; II) a maior intensidade do sinal transportado pelas ondas eletromagnéticas quando captadas por meio de um foco secundário.

- **49.** Uma família resolve substituir o chuveiro atual por uma ducha moderna com potência elétrica variável que pode atingir até 7 500 W. Eles sabem que o chuveiro atual está ligado a um circuito exclusivo alimentado por uma tensão de 220 V e protegido por um disjuntor de 20 A com uma fiação que suporta com segurança até 50 A. Pode-se afirmar que essa substituição pode ser feita,
 - (A) sem qualquer alteração nesse circuito.
 - (B) mas o disjuntor deve ser substituído por outro de 25 A.
 - (C) mas o disjuntor deve ser substituído por outro de 30 A.
 - (D) mas o disjuntor deve ser substituído por outro de 35 A.
 - (E) mas a tensão deve ser reduzida para 127 V.
- **50.** No circuito representado na figura, a fonte tem força eletromotriz, ε, constante, resistência interna desprezível e os resistores têm resistência **R**, iguais.

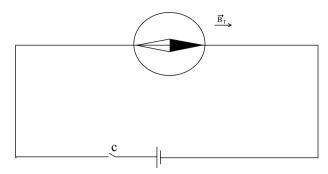
Sabe-se que quando a chave C está aberta, a intensidade da corrente elétrica total que percorre o circuito é i, e a potência nele dissipada é P. Pode-se afirmar que, fechando a chave, os valores da intensidade da corrente e da potência dissipada, no circuito, serão, respectivamente,

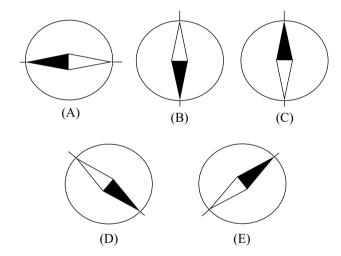

- (A) $\frac{i}{2}e^{\frac{P}{4}}$.
- $(B) \ \frac{i}{2} e \frac{P}{2} \ .$
- (C) i e P.
- (D) 2i e 2P.
- (E) 2i e 4P.

- 51. Um estudante dispõe de uma fonte de tensão de resistência interna desprezível cujos valores nominais são 12 V; 5,0 A e lâmpadas idênticas de valores nominais 12 V; 6,0 W. O número máximo de lâmpadas que o aluno pode ligar a essa fonte, em paralelo, para que brilhem de acordo com as especificações do fabricante, é
 - (A) 2.
 - (B) 5.
 - (C) 8.
 - (D) 10.
 - (E) 25.
- **52.** Num livro de eletricidade, você encontra três informações:
 - isolantes são materiais que não permitem a passagem da corrente elétrica;
 - II. o ar é isolante e
 - III. um raio constitui-se de uma descarga elétrica correspondente, em média, a uma corrente de 10 000 ampères que desloca da nuvem à Terra uma carga de 20 coulombs.

Você pode concluir que essas três informações são

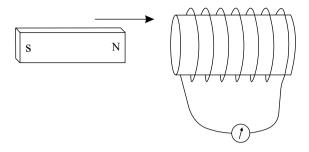
- (A) coerentes e que o intervalo de tempo médio de uma descarga elétrica é de 2,0·10⁻³ s.
- (B) conflitantes e que o intervalo de tempo médio de uma descarga elétrica é de 2,0·10⁻³ s.
- (C) coerentes e que o intervalo de tempo médio de uma descarga elétrica é de 2,0·10⁻⁴ s.
- (D) conflitantes e que o intervalo de tempo médio de uma descarga elétrica é de 2,0·10⁻⁶ s.
- (E) conflitantes e que não é possível avaliar o intervalo de tempo médio de uma descarga elétrica.
- 53. Uma família consome em sua casa cerca de 270 kWh mensais de energia elétrica e, para economizar, resolve substituir 10 lâmpadas incandescentes de 60 W que ficam acesas em média 6 horas por dia, por igual número de lâmpadas fluorescentes de 15 W. Supondo que o tempo de uso dessas lâmpadas não se altere, pode-se afirmar que só com essa medida a redução do consumo mensal de energia elétrica dessa família será de
 - (A) 10%.
 - (B) 20%.
 - (C) 30%.
 - (D) 40%.
 - (E) 50%.


54. A figura representa um imã em forma de barra.


Suponha que se pretenda dividir esse ímã em dois e há duas sugestões para fazer essa divisão. A primeira, de efetuá-la na direção longitudinal, da linha ℓ ; a segunda, na direção normal, da linha \mathbf{n} . Logo em seguida a essa divisão, em relação aos ímãs resultantes, pode-se afirmar que

- (A) ambos vão se repelir, em quaisquer das duas sugestões.
- (B) ambos vão se atrair, em quaisquer das duas sugestões.
- (C) eles vão se repelir na primeira sugestão e se atrair na segunda.
- (D) eles vão se atrair na primeira sugestão e se repelir na segunda.
- (E) eles perdem a imantação na primeira sugestão e se atraem na segunda.

55. A figura representa uma bússola colocada sobre um condutor retilíneo ligado a uma fonte de tensão contínua, com a chave C desligada. Nota-se que, nessa situação, a agulha da bússola mostra que a direção do campo magnético da Terra, Β̄_τ, no local, coincide com a direção da reta que contém o condutor.

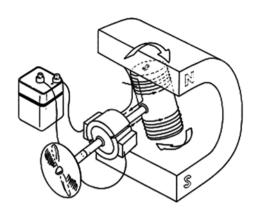


Num determinado momento, a chave é ligada e uma corrente contínua passa a percorrer esse condutor no mesmo sentido do campo magnético terrestre. Sabendo que o módulo do campo magnético gerado por essa corrente onde está colocada a bússola é igual ao módulo do campo magnético terrestre no local, assinale a alternativa que melhor representa a agulha da bússola depois da chave ligada.

20

56. A figura ilustra uma experiência que demonstra o fenômeno da indução eletromagnética: a aproximação e afastamento do ímã do solenoide nele induz uma corrente oscilante, cujo sentido gera no solenoide um campo que se opõe ao movimento do ímã. Esse fenômeno é descrito por duas leis conhecidas pelos nomes dos físicos que as formularam. São elas

- (A) lei de Faraday e lei de Lenz.
- (B) lei de Faraday e lei de Ampère.
- (C) lei de Ampère e lei de Lenz.
- (D) lei de Ampère e lei de Gauss.
- (E) primeira e segunda lei de Oesrted.


57. Um aluno pergunta a você por que, quando ele aquece um prato de comida num forno elétrico, o prato esquenta tanto ou mais do que a própria comida, mas no forno de micro-ondas só a comida esquenta, enquanto o prato continua frio. Você transfere a dúvida a todos os alunos da sala, para que se reúnam em grupos e tragam a resposta na aula seguinte, com a seguinte orientação: nos dois fornos há emissão de ondas eletromagnéticas, como a luz; no caso do forno elétrico, radiações térmicas ou infravermelhas, emitidas por uma resistência elétrica aquecida a alta temperatura; no caso do forno de microondas, micro-ondas emitidas por uma válvula especial chamada *magnetron*.

Na aula seguinte, os grupos apresentam ao professor cinco respostas transcritas nas alternativas a seguir. Assinale qual delas é a correta.

- (A) As radiações térmicas são absorvidas igualmente pelo prato e pela comida, por isso o forno elétrico aquece ambos; as micro-ondas não interagem com o prato, mas são absorvidas pela comida, por isso o forno de micro-ondas só aquece a comida.
- (B) As radiações térmicas refletem-se no prato e na comida, por isso o forno elétrico aquece o prato e a comida; as micro-ondas penetram no prato e refletem-se na comida, por isso o forno de microondas só aquece a comida.
- (C) As radiações térmicas refletem-se no prato e na comida, por isso o forno elétrico aquece o prato e a comida; as micro-ondas são absorvidas pelo prato e refletem-se na comida, por isso o forno de micro-ondas só aquece a comida.
- (D) As radiações térmicas, por sua natureza, interagem tanto com materiais orgânicos como com minerais, por isso o forno elétrico aquece o prato e a comida, mas as micro-ondas só podem interagir com materiais orgânicos, por isso só aquecem a comida.
- (E) As radiações térmicas refletem-se igualmente no prato e na comida, sem serem absorvidas por eles, por isso o forno elétrico aquece o prato e a comida; as microondas são absorvidas pelo prato, mas não pela comida, por isso o forno de micro-ondas só aquece a comida.

- 58. No final do século XIX, uma disputa tecnológica sobre qual a corrente elétrica mais adequada para transmissão e distribuição da energia elétrica gerada em usinas elétricas resultou na opção pelo uso da corrente alternada. Um dos fatores decisivos para a preferência pela corrente alternada foi a possibilidade de, com esse tipo de corrente, serem usados transformadores na rede de distribuição de eletricidade, dispositivos que facilitam a adequação dos valores de tensão e corrente às necessidades dos consumidores e reduzem as perdas por efeito Joule. O princípio físico em que se baseia o funcionamento dos transformadores e a característica da corrente alternada que satisfaz esse princípio são, respectivamente,
 - (A) a conservação da carga e o movimento oscilante dos portadores de carga elétrica.
 - (B) a indução eletrostática e o movimento contínuo dos portadores de carga elétrica.
 - (C) a indução eletrostática e o movimento oscilante dos portadores de carga elétrica.
 - (D) a indução eletromagnética e o movimento contínuo de portadores de carga elétrica.
 - (E) a indução eletromagnética e o movimento oscilante dos portadores de carga elétrica.

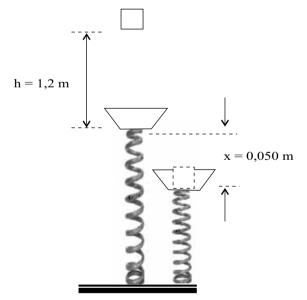
59. Observe a figura:

(http://mail.rdcrd.ab.ca/~smolesky/FOV1-000293AF/3Electromagnetism/ FOV1-00029468/FOV1-00029471/DC%20motor.jpg)

Ela representa um motor elétrico que tem as seguintes características:

- (A) funciona com corrente contínua, campo magnético gerado por ímã permanente e bobina móvel ligada à fonte por um comutador.
- (B) funciona com corrente contínua, campo magnético oscilante gerado por ímã permanente e bobina móvel ligada por uma chave fixa.
- (C) funciona com corrente contínua, campo magnético móvel gerado por ímã permanente e bobina fixa ligada à fonte por um comutador.
- (D) funciona com corrente alternada, campo magnético gerado por ímã permanente e bobina móvel ligada à fonte por um comutador.
- (E) funciona com corrente alternada, campo magnético gerado por ímã móvel e bobina fixa ligada à fonte por um comutador.

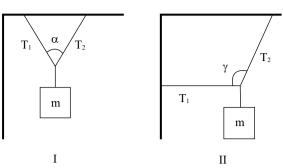
60. Observe a figura que representa uma linha de transmissão de energia eletromagnética.

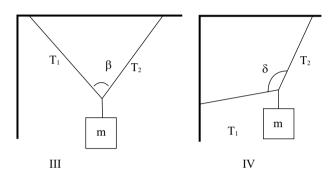


(http://www.protectthepowergrid.org/images/Power-Tower--250-321.jpg)

Os elementos desse sistema assinalados com as setas, que servem para evitar a dissipação de energia através da estrutura das torres das linhas de transmissão, são:

- (A) capacitores.
- (B) transformadores.
- (C) interruptores.
- (D) isoladores.
- (E) conectores.


- 61. O Skate Mega Rampa é um grande evento realizado no Sambódromo do Anhembi, em São Paulo, e dele participam os principais skatistas do mundo. A rampa tem cerca 100 metros de comprimento e 27,0 metros de altura, o que é equivalente a um prédio de nove andares. Admita que a velocidade dos skates na parte mais alta da rampa, ao iniciarem a descida, seja sempre nula, que não haja atrito e nem resistência do ar. Para que a velocidade final dos skatistas, no ponto mais baixo da rampa, fosse aumentada em 20%, seria necessário que a altura da rampa fosse aproximadamente, em metros, igual a
 - (A) 28,0.
 - (B) 30,0.
 - (C) 39,0.
 - (D) 42,0.
 - (E) 52,0.
- **62.** Um bloco de massa igual a 2,0 kg é abandonado livremente de uma altura h = 1,2 m e atinge uma plataforma, de massa desprezível, ligada a uma mola de massa também desprezível, suposta ideal, conforme está indicado na figura. Sabe-se que o choque do bloco com a plataforma é perfeitamente inelástico. Considerando a aceleração da gravidade igual a 10m/s² e que a mola sofra uma compressão x = 5,0 x 10⁻² m até frear completamente o bloco, pode-se afirmar que a constante elástica da mola, em 10⁴ N/m, é



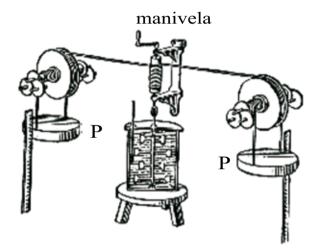
- (A) 1,0.
- (B) 2,0.
- (C) 3,0.
- (D) 4,0.
- (E) 5,0.

- 63. Um motor deve ser utilizado para tracionar uma polia que deverá erguer, verticalmente, caixas de mesma massa a uma altura de 10 m. Utilizando um motor A, realiza-se essa tarefa em 10 s. Utilizando outro motor B, ergue-se a mesma caixa, à mesma altura, em 40 s. O trabalho realizado pela força de tração exercida pelo motor A, comparado ao trabalho da força de tração exercida pelo motor B, é
 - (A) nulo.
 - (B) o mesmo.
 - (C) duas vezes maior.
 - (D) três vezes maior.
 - (E) quatro vezes maior.
- 64. Você prepara uma atividade experimental para discutir com seus alunos o Princípio de Arquimedes e pendura um corpo numa mola, suposta ideal, de constante elástica igual a 1,2 N/cm, e mede uma deformação de x = 6,0 cm. Em seguida, com o corpo totalmente imerso em água, você mede uma deformação na mola x = 3,0 cm. Considerando a aceleração da gravidade igual a 10 m/s² e a densidade da água igual a 1,0 x 10³ kg/m³, você conclui que o volume do corpo, em 10⁻⁵ m³, vale
 - (A) 11.
 - (B) 16.
 - (C) 26.
 - (D) 36.
 - (E) 46.

65. Na figura estão representadas quatro montagens experimentais em que um mesmo bloco de massa m está suspenso, por fios ideais, em equilíbrio.

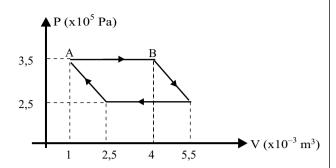
Sabendo-se que $\alpha < \beta < \gamma < \delta$, pode-se afirmar que o módulo da resultante das trações T_1 e T_2 , é

- (A) maior em I.
- (B) maior em II.
- (C) maior em III.
- (D) maior em IV.
- (E) igual nas quatro montagens.
- **66.** Com previsão para ficar pronto em 2016, o Kingdom Tower deverá ser o prédio mais alto do mundo. Projetado para ter 1,0 km de altura e uma área de 530 000 metros quadrados, o novo prédio a ser construído na Arábia Saudita foi projetado para superar em 173 metros o Burj Khalifa, o maior arranhacéu do mundo atualmente. Quando ficar pronto, imagine que alguém suba, do térreo até o ponto mais alto do Kingdom Tower, com um barômetro de mercúrio. Admitindo que a densidade do mercúrio seja 1,3 x 10⁴ kg/m³ e que a densidade do ar seja constante e igual a 1,3 kg/m³, qual será, em mmHg, a variação da altura da coluna de mercúrio no barômetro?
 - (A) 10.
 - (B) 65.
 - (C) 80.
 - (D) 100.
 - (E) 112.


- 67. Na determinação experimental do calor latente de vaporização da água, um aluno, por meio de um ebulidor elétrico de 700 W, mantém em ebulição a água contida em um béquer durante 10,0 minutos. Ao final desse tempo, o aluno verifica que foram evaporados 200 g de água. O valor do calor latente de vaporização da água, em 10⁶ J/kg, obtido pelo aluno, foi de
 - (A) 1,8.
 - (B) 2,1.
 - (C) 2,5.
 - (D) 2,7.
 - (E) 3,0.
- **68.** A tabela fornece o calor específico (c) e a condutividade térmica (σ) de alguns materiais. A partir desses dados, pode-se afirmar que panelas de mesma massa, tamanho e espessura, que aquecem mais rápido e conservam por mais tempo o calor, são feitas de

Material	c (J/kg.K)	σ (W/m.K)
Alumínio	900	230
Cerâmica	850	6,3
Ferro	480	80
Vidro refratário	840	1,0

- (A) alumínio.
- (B) cerâmica.
- (C) ferro.
- (D) vidro refratário.
- (E) ferro ou cerâmica.


69. Em sua mais famosa experiência, Joule construiu um dispositivo para medir o equivalente mecânico do calor (veja a figura). Depois de elevados por meio da manivela, os discos P caem de certa altura e, durante sua queda, um sistema de pás, mergulhadas na água contida num compartimento termicamente isolado, gira fazendo com que aumente a temperatura da água. Sabendo que a massa de água contida no compartimento termicamente isolado seja 0,25 kg, a massa de cada disco seja m = 1,0 kg, e que cada um caia de uma altura h = 1,0 m, pode-se afirmar que a variação de temperatura, em 10⁻³ ° C, sofrida pela água, será

DADOS: Considere que o calor específico da água seja $4.0 \times 10^3 \text{ J/kg}^{\circ}\text{C}$. Admita que toda energia potencial seja transformada em energia térmica; despreze o calor absorvido pelas pás e adote $g = 10 \text{ m/s}^2$.

- (A) 12.
- (B) 15.
- (C) 20.
- (D) 25.
- (E) 30.
- 70. O rendimento de uma máquina térmica ideal
 - (A) é sempre igual a 100%.
 - (B) é sempre menor que 100%.
 - (C) pode ser 100%.
 - (D) às vezes pode ser menor que 100%.
 - (E) é nulo.

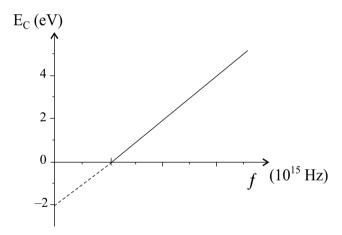
71. O gráfico P x V representa um ciclo de uma máquina térmica hipotética que, em 1 segundo, repete esse ciclo 20 vezes. A potência, em kW, dessa máquina, vale

- (A) 2,0.
- (B) 2,5.
- (C) 3,0.
- (D) 4,5.
- (E) 6,0.

72. Considere um sistema que, ao interagir com a vizinhança, realiza uma transformação irreversível. A partir dessas informações, pode-se afirmar, corretamente, que certamente a entropia

- (A) do sistema aumentou.
- (B) do sistema diminuiu.
- (C) do sistema manteve-se constante.
- (D) do universo (sistema + vizinhança) aumentou.
- (E) do universo (sistema + vizinhança) manteve-se constante.

73. A variação de entropia de um sistema ΔS é dada pelo quociente entre a energia transferida para o sistema sob a forma de calor, ΔQ , e a temperatura absoluta T constante em que este se encontra: $\Delta S = \frac{\Delta Q}{T}$. Assim, no Sistema Internacional de Unidades, a entropia é dada em J/K (joule/kelvin).


Uma amostra de gelo à temperatura de 0° C, de massa igual a 200 gramas, ao trocar calor com o ambiente, derrete totalmente. Admitindo que o calor latente de fusão da água seja 334×10^3 J/kg, a entropia da amostra, em 10^2 J/K variou, aproximadamente, em

- (A) -2,45.
- (B) +2.45.
- (C) 3.33.
- (D) + 3.33.
- (E) +4,15.

74. Uma bomba de encher pneus de bicicleta é utilizada para comprimir, vagarosamente, uma massa de ar de modo que sua temperatura, em torno de 20 °C, seja mantida constante. Admitindo que o orificio de saída esteja vedado e que a massa de ar seja comprimida por uma pressão igual à de 3 x 10⁵ Pa, promovendo uma variação de volume igual a 1 x 10⁻⁴ m³, pode-se afirmar que a entropia da massa de ar

- (A) aumentou 0,1 J/K.
- (B) diminuiu 0,1 J/K.
- (C) manteve-se constante.
- (D) aumentou 1 J/K.
- (E) diminuiu 1 J/K.

75. No efeito fotoelétrico, elétrons podem ser emitidos da superfície de um material quando sobre ela incide uma radiação eletromagnética. A condição para que essa emissão ocorra ($E_{\text{Cmáx}} > 0$) é dada pela expressão $E_{\text{Cmáx}} = hf - \Phi$, onde $h = 6,63 \times 10^{-34}$ J.s (constante de Planck), f é a frequência da radiação incidente, e Φ é a função trabalho (constante que depende do material). O gráfico a seguir foi construído a partir de dados obtidos de um experimento de emissão de elétrons de um determinado metal pelo efeito fotoelétrico.

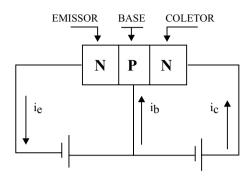

A partir do gráfico, pode-se afirmar que a frequência mínima, em Hz, para que a emissão de elétrons do metal se inicie, vale, aproximadamente,

DADO: Considere que 1 e V = $1.6 \times 10^{-19} \text{ J}$.

- (A) 4.8×10^{14} .
- (B) 5.2×10^{14} .
- (C) 6.1×10^{14} .
- (D) $7,4 \times 10^{14}$.
- (E) 2.0×10^{15} .

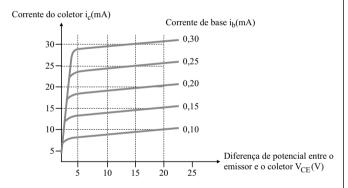
- **76.** O modelo atômico de Bohr apresentou um importante avanço em relação ao modelo de Rutherford porque
 - (A) consolidou a ideia do núcleo atômico como partícula central de carga elétrica positiva.
 - (B) garantiu a estabilidade da órbita dos elétrons em torno do núcleo.
 - (C) explicou a possibilidade dos elétrons assumirem qualquer órbita, a qualquer distância do núcleo.
 - (D) introduziu a ideia de camadas nucleares quantizadas em números chamados quânticos.
 - (E) propôs que o átomo seria uma massa homogênea de carga positiva com elétrons nela incrustrados.
- 77. Até o início da década de 1930, não era possível explicar a estabilidade do núcleo tendo em vista a repulsão eletrostática entre os prótons nele contidos. A descoberta do nêutron pelo físico inglês James Chadwick permitiu que se desse início à formulação de uma teoria, proposta pioneiramente pelo físico Japonês Hideki Yukawa, que previu a existência de uma força capaz de manter o núcleo atômico coeso. Essa força é
 - (A) denominada interação forte.
 - (B) denominada interação fraca.
 - (C) responsável pelos decaimentos alfa, beta e gama.
 - (D) denominada interação eletrofraca.
 - (E) responsável pela fissão nuclear.
- **78.** Radioisótopos artificiais podem ser obtidos pela fissão do núcleo de isótopos existentes na natureza. Nesse processo de fissão, bombardeia-se o núcleo de isótopos naturais com
 - (A) fótons.
 - (B) partículas alfa.
 - (C) elétrons.
 - (D) nêutrons.
 - (E) prótons.

79. A grande evolução tecnológica da eletrônica não seria possível sem o desenvolvimento dos estudos sobre os semicondutores. A figura a seguir representa um diodo, uma junção de dois semicondutores tipos n (onde há excessos de elétrons) e p (onde há carência de elétrons ou excesso de lacunas), ligado a uma fonte de tensão contínua.


Sobre os semicondutores, são feitas as seguintes afirmações:

- I. uma junção p-n é formada por semicondutores cujos átomos têm núcleos tão próximos que ocorre uma interação entre seus prótons e nêutrons;
- II. uma corrente elétrica só irá se estabelecer no circuito se o semicondutor tipo p encontrar-se sob potencial mais alto que o semicondutor do tipo n, caso contrário a corrente não circulará:
- III. os diodos são dispositivos eletrônicos que só permitem o fluxo de elétrons num circuito em um único sentido.

Está(ão) correta(s) a(s) afirmação(ões)


- (A) I, II e III.
- (B) I e II, apenas.
- (C) I e III, apenas.
- (D) II e III, apenas.
- (E) I, apenas.

80. Se inserirmos um semicondutor do tipo p entre dois semiconcutores do tipo n, obteremos um dispositivo eletrônico denominado transistor que se comporta como um amplificador de corrente. No transistor, o cristal do meio, que precisa ter uma espessura muito pequena, é chamado de base; os outros dois cristais são o emissor e o coletor:

Considere a curva característica tensão-corrente de um transistor no qual a diferença de potencial entre o coletor e o emissor é mantida em 20 V. Se a corrente elétrica de base variar de 0,10 mA para 0,15 mA, o fator de ampliação do

 $transistor \left(\right. F_{A} = \frac{variação \ da \ corrente \ do \ coletor}{variação \ da \ corrente \ de \ base} \left. \right) \'e \ de$

- (A) 5,0.
- (B) 10.
- (C) 50.
- (D) 100.
- (E) 500.